Differential Geometry Chapter 4

Surfaces in \mathbb{R}^{3}.

Definition 1 A co-ordinate patch of class C^{∞} is a pair (U, \mathbf{x}), where U is an open subset of \mathbb{R}^{2} and $\mathbf{x}: U \rightarrow \mathbb{R}^{3}$ a mapping such that
i. \mathbf{x} is of class C^{∞},
ii. \mathbf{x} is 1-1 and $\mathbf{x}^{-1}: \operatorname{Im} \mathbf{x} \rightarrow U$ is continuous,
iii. The Jacobian matrix $J \mathbf{x}(\mathbf{u})$ is of full rank for all $\mathbf{u} \in U$.

Definition $2 A$ surface in \mathbb{R}^{3} (of class C^{∞}) is a non-empty subset $M \subseteq \mathbb{R}^{3}$ such that for each $\mathbf{p} \in M$ there exists a co-ordinate patch of class $C^{\infty},(U, \mathbf{x})$, with $\mathbf{p} \in \mathbf{x}(U) \subseteq M$.

So surfaces can be described by a union of $\left\{\left(x_{1}(\mathbf{u}), x_{2}(\mathbf{u}), x_{3}(\mathbf{u})\right): \mathbf{u} \in U\right\}$. Particular examples are $\{(u, v, f(\mathbf{u})): \mathbf{u} \in U\}$, for $f: U \rightarrow \mathbb{R}$, known as Monge patches. This gives the surface $z=f(x, y)$.

It can be shown (see the course on Calculus of Several Variables) that sets of the form $\left\{\mathbf{x} \in \mathbb{R}^{3}: g(\mathbf{x})=c\right\}$, when non-empty and where g satisfies $J g(\mathbf{x}) \neq \mathbf{0}$, defines a surface. We say the surface is defined implicitly.

Definition 3 Let $\alpha(u)=(g(u), h(u), 0), u \in I$, be a curve in \mathbb{R}^{3} with $h(u)>0$. Then

$$
\mathbf{x}(u, v)=(g(u), h(u) \cos v, h(u) \sin v)
$$

is the surface of revolution about the x-axis.

Exercise 4 The curve $\alpha(u)=(r \sin u, R+r \cos u, 0)$, $u \in I$, with $R>r>$ 0 , gives the torus

$$
\mathbf{x}(u, v)=(r \sin u,(R+r \cos u) \cos v,(R+r \cos u) \sin v) .
$$

Example 5 For real a, b, c not equal to 0, let

$$
M=\left\{\mathbf{x} \in \mathbb{R}^{3}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1\right\}
$$

Since $(a, 0,0) \in M$ we have $M \neq \phi$. Also

$$
J g(\mathbf{x})=\left(\frac{2 x}{a^{2}}, \frac{2 y}{b^{2}}, \frac{2 z}{c^{2}}\right)
$$

which is $=0$ only if $\mathbf{x}=\mathbf{0}$. But $\mathbf{0} \notin M$. Hence M is a surface.
Let $M \subseteq \mathbb{R}^{3}$ be a surface and $\mathbf{f}: \mathbb{R}^{3} \rightarrow M$ a map. Choose $\mathbf{y} \in \mathbb{R}^{3}$ so $\mathbf{f}(\mathbf{y}) \in M$. By the definition of M there exists a co-ordinate patch (U, \mathbf{x}), where $U \subseteq \mathbb{R}^{2}, \mathbf{x}(U) \subseteq M$ and $\mathbf{f}(\mathbf{y}) \in \mathbf{x}(U)$. Hence $\mathbf{x}^{-1} \mathbf{f}(\mathbf{y}) \in U$.

To accommodate general situations in which M is not necessarily a subset of a Euclidean Space we make the following definition.

Definition $6 \mathrm{f}: \mathbb{R}^{3} \rightarrow M$ is differentiable in M at y provided $\mathbf{x}^{-1} \mathbf{f}$: $\mathbb{R}^{3} \rightarrow U \subseteq \mathbb{R}^{2}$ is C^{∞}.

But in this course $M \subseteq \mathbb{R}^{3}$ so we already have a definition of $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ being C^{∞}. It can be shown that these definitions are equivalent.

In particular, a curve $\alpha: I \rightarrow \mathbb{R}^{3}$ is differentiable in M provided α is a curve, which implies α is C^{∞}, and lies in M.

Definition $\mathbf{7}$ Let $\mathbf{p} \in M$ and (U, \mathbf{x}) a co-ordinate patch such that $\mathbf{p} \in$ $\mathbf{x}(U) \subseteq M$. So $\mathbf{x}^{-1}(\mathbf{p})=\mathbf{u}_{0} \in U$. Then
$u \mapsto \mathbf{x}\left(u, v_{0}\right)$, defined for $\left\{u:\left(u, v_{0}\right) \in U\right\}$, is the u-parameter curve in M,
$v \mapsto \mathbf{x}\left(u_{0}, v\right)$, defined for $\left\{v:\left(u_{0}, v\right) \in U\right\}$, is the v-parameter curve in M.

Example 8 The surface $w=\ell_{1} u^{2}+\ell_{2} v^{2}$ is defined by the one Monge patch

$$
\left\{\left(u, v, \ell_{1} u^{2}+\ell_{2} v^{2}\right):(u, v) \in \mathbb{R}^{2}\right\}
$$

The parameter curves are $u \mapsto\left(u, v_{0}, \ell_{1} u^{2}+\ell_{2} v_{0}^{2}\right)$ and $v \mapsto\left(u_{0}, v, \ell_{1} u_{0}^{2}+\ell_{2} v^{2}\right)$.
Definition 9 Let $\mathbf{p} \in M$. A vector $\mathbf{v}_{\mathbf{p}}$ in \mathbb{R}^{3} is a tangent vector of M at \mathbf{p} if $\mathbf{v}_{\mathbf{p}}$ is a velocity vector of some curve in M.

The set of all tangent vectors of M at \mathbf{p} is the Tangent Space of M at \mathbf{p} denoted by $T_{\mathbf{p}}(M)$.

Examples of tangent vectors at $\mathbf{x}(\mathbf{u})=\mathbf{p}$ would be $\mathbf{x}_{u}(\mathbf{u})$ and $\mathbf{x}_{v}(\mathbf{u})$. These are the two columns of $J \mathbf{x}(\mathbf{u})$ and, since this is assumed to be of rank 2 , the $\mathbf{x}_{u}(u)$ and $\mathbf{x}_{v}(u)$ are linearly independent. Thus

Theorem 10 Let $\mathbf{p} \in M$ and (U, \mathbf{x}) a co-ordinate patch with $\mathbf{x}(\mathbf{u})=\mathbf{p}$. Then $\mathbf{v}_{\mathbf{p}} \in T_{\mathbf{p}}(M)$ if, and only if, $\mathbf{v}_{\mathbf{p}}$ can be written as a linear combination of $\mathbf{x}_{u}(\mathbf{u})$ and $\mathbf{x}_{v}(\mathbf{u})$.

Proof not given. See Calculus of Several Variables.
This result means that $T_{\mathbf{p}}(M)$ is of dimension 2 and $\mathbf{x}_{u}(\mathbf{u}) \times \mathbf{x}_{v}(\mathbf{u})$ is orthogonal to $T_{\mathbf{p}}(M)$.

Definition $11 A$ vector field Y on M is a function assigning to each $\mathbf{p} \in M$ a tangent vector $Y(\mathbf{p}) \in T_{\mathbf{p}}\left(\mathbb{R}^{3}\right)\left(\operatorname{not} T_{\mathbf{p}}(M)\right)$. A vector field Y on M is a normal vector field on M if, for each $\mathbf{p} \in M, Y(\mathbf{p})$ is orthogonal to $T_{\mathbf{p}}(M)$.

For example, $\mathbf{x}_{u} \times \mathbf{x}_{v}$ is a normal vector field. Or
Lemma 12 If $M=\{\mathbf{x}: g(\mathbf{x})=c\}$ for some differentiable $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$, then the gradient ∇g is a normal vector field on M.

Proof Let $\mathbf{v}_{\mathbf{p}} \in T_{p}(M)$. The there exists a curve $\alpha:(-\eta, \eta) \rightarrow M$ such that $\alpha(0)=\mathbf{p}$ and $\alpha^{\prime}(0)=\mathbf{v}_{\mathbf{p}}$. Since $\alpha(t) \in M$ we have $g(\alpha(t))=c$. The Chain Rule gives

$$
\nabla g(\alpha(0)) \bullet \alpha^{\prime}(0)=0, \quad \text { i.e. } \quad \nabla g(\mathbf{p}) \bullet \mathbf{v}_{\mathbf{p}}=0
$$

Thus $\nabla g(\mathbf{p})$ is orthogonal to $\mathbf{v}_{\mathbf{p}}$. True for all $\mathbf{v}_{\mathbf{p}} \in T_{\mathbf{p}}(M)$ means $\nabla g(\mathbf{p})$ is orthogonal to $T_{\mathbf{p}}(M)$. True for all $\mathbf{p} \in M$ means ∇g is a normal vector field on M.

Example 13 Returning to $M=\left\{\left(u, v, \ell_{1} u^{2}+\ell_{2} v^{2}\right):(u, v) \in \mathbb{R}^{2}\right\}$, we have

$$
\mathbf{x}_{u}(u)=\left(1,0,2 \ell_{1} v\right)_{\mathbf{x}(\mathbf{u})} \quad \text { and } \quad \mathbf{x}_{v}(u)=\left(0,1,2 \ell_{2} v\right)_{\mathbf{x}(\mathbf{u})}
$$

in which case

$$
\mathbf{x}_{u}(u) \times \mathbf{x}_{v}(u)=\left(1,0,2 \ell_{1} v\right)_{\mathbf{x}(\mathbf{u})} \times\left(0,1,2 \ell_{2} v\right)_{\mathbf{x}(\mathbf{u})}=\left(-2 \ell_{1} v,-2 \ell_{2} v, 1\right)_{\mathbf{x}(\mathbf{u})}
$$

is a normal vector field on M.

Example 14 Returning to $M=\left\{\mathbf{x} \in \mathbb{R}^{3}: x^{2} / a^{2}+y^{2} / b^{2}+z^{2} / c^{2}=1\right\}$ the normal at $\mathbf{p} \in M$ is

$$
\left(\frac{2 p_{1}}{a^{2}}, \frac{2 p_{2}}{b^{2}}, \frac{2 p_{3}}{c^{2}}\right)_{\mathbf{p}} .
$$

Question How does the unit normal vector change as \mathbf{p} changes?
Definition 15 If $\mathbf{p} \in M$, for each $\mathbf{v}_{\mathbf{p}} \in T_{\mathbf{p}}(M)$ defined

$$
S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right)=-\nabla_{\mathbf{v}_{\mathbf{p}}} U
$$

where U is a unit normal vector field. $S_{\mathbf{p}}$ is called the Shape Operator of M at \mathbf{p}.

To recall, $\nabla_{\mathbf{v}_{\mathbf{p}}} U=\left.U^{\prime}(\mathbf{p}+t \mathbf{v})\right|_{t=0}$, i.e. the initial rate of change of U as you move from \mathbf{p} in the direction of \mathbf{v}. Also

$$
\begin{equation*}
\nabla_{\mathbf{v}_{\mathbf{p}}} V=\sum_{i=1}^{n} \mathbf{v}_{\mathbf{p}}\left[f_{i}\right] U_{i}(\mathbf{p}) \tag{1}
\end{equation*}
$$

where, similarly, $\mathbf{v}_{\mathbf{p}}[f]=f^{\prime}(\mathbf{p}+t \mathbf{v})_{t=0}$ is the initial rate of change of the scalar-valued function f as you move from \mathbf{p} is the direction of \mathbf{v}. It was shown that $\mathbf{v}_{\mathbf{p}}[f]=\nabla f(\mathbf{p}) \bullet \mathbf{v}_{\mathbf{p}}$, i.e. the component of the gradient in the direction of travel.

Lemma 16 For each $\mathbf{p} \in M$, the operator $S_{\mathbf{p}}: T_{\mathbf{p}}(M) \rightarrow T_{\mathbf{p}}(M)$ is linear.
Proof Let $\mathbf{v}_{\mathbf{p}} \in T_{\mathbf{p}}(M)$. Since $U \bullet U=1$ we have $\mathbf{v}_{\mathbf{p}}[U \bullet U]=0$ (there is no change as we move). From an earlier lemma, $\mathbf{v}_{\mathbf{p}}[U \bullet U]=2 \nabla_{\mathbf{v}_{\mathbf{p}}} U \bullet U(\mathbf{p})=$ $-S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right) \bullet U(\mathbf{p})$. Thus $S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right) \bullet U(\mathbf{p})=0$ which means that $S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right) \in T_{\mathbf{p}}(M)$. Hence $S_{\mathbf{p}}: T_{\mathbf{p}}(M) \rightarrow T_{\mathbf{p}}(M)$.

To see it is linear let $\mathbf{v}_{\mathbf{p}}, \mathbf{w}_{\mathbf{p}} \in T_{\mathbf{p}}(M)$ and $\lambda, \mu \in \mathbb{R}$. Then

$$
\begin{aligned}
S_{\mathbf{p}}\left(\lambda \mathbf{v}_{\mathbf{p}}+\mu \mathbf{w}_{\mathbf{p}}\right) & =-\nabla_{\lambda \mathbf{v}_{\mathbf{p}}+\mu \mathbf{w}_{\mathbf{p}}} U \\
& =-\left(\lambda \nabla_{\mathbf{v}_{\mathbf{p}}} U+\mu \nabla_{\mathbf{w}_{\mathbf{p}}} U\right)
\end{aligned}
$$

by earlier lemma

$$
=\lambda S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right)+\mu S_{\mathbf{p}}\left(\mathbf{w}_{\mathbf{p}}\right)
$$

Thus the linearity of S_{p} follows from the linearity of the covariant derivative.

If $S_{\mathbf{p}}$ is measuring the instantaneous change of the normal it is therefore measuring any change in the tangent space and thus of the surface.

We will denoted by S both the set of all S_{p} for all p or for a representative element from this set.

Question How to calculate $S_{\mathbf{p}}$? It is a linear transformation and so it is sufficient to calculate it's effect on a basis. In the terms of \mathbf{p} in a patch (U, \mathbf{x}) and basis would be $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}\right\}$. There is a possible confusion here between an open set $U \subseteq \mathbb{R}^{2}$ and a normal vector field U. So now let N denote a unit normal vector field on a surface.

Lemma 17 Let $\mathbf{p} \in M$ and (U, \mathbf{x}) a co-ordinate patch such that $\mathbf{p} \in \mathbf{x}(U) \subseteq$ M. So $\mathbf{p}=\mathbf{x}\left(\mathbf{u}_{0}\right)$ for some $\mathbf{u}_{0} \in U$. Let Z be a vector field on $\mathbf{x}(U)$, so $Z=\sum_{i=1}^{3} y_{i} U_{i}$, where $y: \mathbf{x}(U) \rightarrow \mathbb{R}$. Define $z_{i}(u)=y_{i}(\mathbf{x}(u)), 1 \leq i \leq 3$, so $Z=\sum_{i=1}^{3} z_{i} U_{i}$. Then

$$
\begin{aligned}
\nabla_{\mathbf{x}_{u}}(Z) & =\sum_{i=1}^{3} \frac{\partial z_{i}}{\partial u}\left(\mathbf{u}_{0}\right) U_{i}(\mathbf{p}), \\
\nabla_{\mathbf{x}_{v}}(Z) & =\sum_{i=1}^{3} \frac{\partial z_{i}}{\partial v}\left(\mathbf{u}_{0}\right) U_{i}(\mathbf{p}),
\end{aligned}
$$

Proof By (1) above

$$
\nabla_{\mathbf{x}_{u}}(Z)=\sum_{i=1}^{3} \mathbf{x}_{u}\left[y_{i}\right] U_{i}(\mathbf{p})
$$

Here

$$
\mathbf{x}_{u}\left[y_{i}\right]=\nabla y_{i}(\mathbf{p}) \bullet \mathbf{x}_{u}=\sum_{j=1}^{3} \frac{\partial y i}{\partial x_{j}}(\mathbf{p}) \frac{\partial x_{j}}{\partial u}\left(\mathbf{u}_{0}\right)=\frac{\partial z}{\partial u}\left(\mathbf{u}_{0}\right)
$$

by the Chain Rule. This gives the first stated result. There are no new ideas in the proof of the second statement.

Lemma 18 Notation as before. With N a unit vector field on $\mathbf{x}(U)$.

$$
\begin{aligned}
S_{\mathbf{p}}\left(\mathbf{x}_{u}\right) \bullet \mathbf{x}_{\mathbf{u}} & =N \bullet \mathbf{x}_{u u} \\
S_{\mathbf{p}}\left(\mathbf{x}_{u}\right) \bullet \mathbf{x}_{v} & =N \bullet \mathbf{x}_{u v} \\
S_{\mathbf{p}}\left(\mathbf{x}_{v}\right) \bullet \mathbf{x}_{u} & =N \bullet \mathbf{x}_{v u} \\
S_{\mathbf{p}}\left(\mathbf{x}_{v}\right) \bullet \mathbf{x}_{v} & =N \bullet \mathbf{x}_{v v} .
\end{aligned}
$$

(What is meant here is that given $\mathbf{p} \in \mathbf{x}(U)$ there exists $\mathbf{u}_{0}: x\left(\mathbf{u}_{0}\right)=\mathbf{p}$. Then $S_{\mathbf{p}}\left(\mathbf{x}_{u}\left(\mathbf{u}_{0}\right)\right) \bullet \mathbf{x}_{\mathbf{u}}\left(\mathbf{u}_{0}\right)=N(\mathbf{p}) \bullet \mathbf{x}_{u u}\left(\mathbf{u}_{0}\right)$, etc. $)$

Proof Choose $Z=N$ in the previous lemma so $N=\sum_{i=1}^{3} z_{i} U_{i}$ and

$$
\nabla_{\mathbf{x}_{\mathbf{u}}}(N)=\sum_{i=1}^{3} \frac{\partial z_{i}}{\partial u}\left(\mathbf{u}_{0}\right) U_{i}(\mathbf{p}) .
$$

But for each $\mathbf{p} \in \mathbf{x}(U)$, the tangent vector $\mathbf{x}_{u}(\mathbf{p})$ lies in $T_{\mathbf{p}}(M)$ and so is orthogonal to N, i.e.

$$
0=\mathbf{x}_{u} \bullet N=\sum_{i=1}^{3} \frac{\partial x_{i}}{\partial u} z_{i}
$$

Differentiating w.r.t. u,

$$
0=\sum_{i=1}^{3} \frac{\partial^{2} x_{i}}{\partial u^{2}} z_{i}+\sum_{i=1}^{3} \frac{\partial x_{i}}{\partial u} \frac{\partial z_{i}}{\partial u}=N \bullet \mathbf{x}_{u u}+\mathbf{x}_{u} \bullet \nabla_{\mathbf{x}_{\mathbf{u}}}(N),
$$

which gives the first result. The other three follow similarly.
Remark Since \mathbf{x} is a C^{∞} map it can be shown (see Calculus of Several Variables) that $\mathbf{x}_{u v}=\mathbf{x}_{v u}$. Thus

$$
\begin{equation*}
S_{\mathbf{p}}\left(\mathbf{x}_{u}\right) \bullet \mathbf{x}_{v}=N \bullet \mathbf{x}_{u v}=N \bullet \mathbf{x}_{v u}=S_{\mathbf{p}}\left(\mathbf{x}_{v}\right) \bullet \mathbf{x}_{u} . \tag{2}
\end{equation*}
$$

In fact this result holds for all pairs of vectors in the Tangent Space.
Lemma 19 For all $\mathbf{u}_{\mathbf{p}}, \mathbf{v}_{\mathbf{p}} \in T_{\mathbf{p}}(M)$ we have $S_{\mathbf{p}}\left(\mathbf{u}_{\mathbf{p}}\right) \bullet \mathbf{v}_{\mathbf{p}}=S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right) \bullet \mathbf{u}_{\mathbf{p}}$.

Proof $\mathbf{u}_{\mathbf{p}}=k \mathbf{x}_{u}+l \mathbf{x}_{v}$ and $\mathbf{v}_{\mathbf{p}}=s \mathbf{x}_{u}+t \mathbf{x}_{v}$. Then

$$
\begin{aligned}
S_{\mathbf{p}}\left(\mathbf{u}_{\mathbf{p}}\right) \bullet \mathbf{v}_{\mathbf{p}} & =S_{\mathbf{p}}\left(k \mathbf{x}_{u}+l \mathbf{x}_{v}\right) \bullet\left(s \mathbf{x}_{u}+t \mathbf{x}_{v}\right) \\
& =\left(k S_{\mathbf{p}}\left(\mathbf{x}_{u}\right)+l S_{\mathbf{p}}\left(\mathbf{x}_{v}\right)\right) \bullet\left(s \mathbf{x}_{u}+t \mathbf{x}_{v}\right) \\
& =k s S_{\mathbf{p}}\left(\mathbf{x}_{u}\right) \bullet \mathbf{x}_{u}+k t S_{\mathbf{p}}\left(\mathbf{x}_{u}\right) \bullet \mathbf{x}_{v}+l s S_{\mathbf{p}}\left(\mathbf{x}_{v}\right) \bullet \mathbf{x}_{u}+l t S_{\mathbf{p}}\left(\mathbf{x}_{v}\right) \bullet \mathbf{x}_{v} \\
& =k s S_{\mathbf{p}}\left(\mathbf{x}_{u}\right) \bullet \mathbf{x}_{u}+k t S_{\mathbf{p}}\left(\mathbf{x}_{v}\right) \bullet \mathbf{x}_{u}+l s S_{\mathbf{p}}\left(\mathbf{x}_{u}\right) \bullet \mathbf{x}_{v}+l t S_{\mathbf{p}}\left(\mathbf{x}_{v}\right) \bullet \mathbf{x}_{v}
\end{aligned}
$$

having used (2)

$$
\begin{aligned}
& =S_{\mathbf{p}}\left(s \mathbf{x}_{u}\right) \bullet k \mathbf{x}_{u}+S_{\mathbf{p}}\left(t \mathbf{x}_{v}\right) \bullet k \mathbf{x}_{u}+S_{\mathbf{p}}\left(s \mathbf{x}_{u}\right) \bullet l \mathbf{x}_{v}+S_{\mathbf{p}}\left(t \mathbf{x}_{v}\right) \bullet l \mathbf{x}_{v} \\
& =\left(S_{\mathbf{p}}\left(s \mathbf{x}_{u}\right)+S_{\mathbf{p}}\left(t \mathbf{x}_{v}\right)\right) \bullet k \mathbf{x}_{u}+\left(S_{\mathbf{p}}\left(s \mathbf{x}_{u}\right)+S_{\mathbf{p}}\left(t \mathbf{x}_{v}\right)\right) \bullet l \mathbf{x}_{v} \\
& =\left(S_{\mathbf{p}}\left(s \mathbf{x}_{u}\right)+S_{\mathbf{p}}\left(t \mathbf{x}_{v}\right)\right) \bullet\left(k \mathbf{x}_{u}+l \mathbf{x}_{v}\right) \\
& =S_{\mathbf{p}}\left(s \mathbf{x}_{u}+t \mathbf{x}_{v}\right) \bullet\left(k \mathbf{x}_{u}+l \mathbf{x}_{v}\right) \\
& =S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right) \bullet \mathbf{u}_{\mathbf{p}}
\end{aligned}
$$

This results says that S_{p} is a symmetric operator.
Given a patch (U, \mathbf{x}) it is easy to calculate $N \bullet \mathbf{x}_{u u}, \ldots$ etc but how can we use these to say something about the surface? One problem is that though $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}\right\}$ is a basis the vectors may not be orthogonal.

If $\left\{\mathbf{e}_{\mathbf{p}}^{1}, \mathbf{e}_{\mathbf{p}}^{2}\right\}$ is an orthonormal basis of $T_{\mathbf{p}}(M)$ then the matrix of $S_{\mathbf{p}}$ w.r.t. this basis is

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

where $S_{\mathbf{p}}\left(\mathbf{e}_{\mathbf{p}}^{1}\right)=a \mathbf{e}_{\mathbf{p}}^{1}+b \mathbf{e}_{\mathbf{p}}^{2}$ and $S_{\mathbf{p}}\left(\mathbf{e}_{\mathbf{p}}^{2}\right)=c \mathbf{e}_{\mathbf{p}}^{1}+d \mathbf{e}_{\mathbf{p}}^{2}$. But since $S_{\mathbf{p}}$ is symmetric

$$
c=\mathbf{e}_{\mathbf{p}}^{1} \bullet S_{\mathbf{p}}\left(\mathbf{e}_{\mathbf{p}}^{2}\right)=\mathbf{e}_{\mathbf{p}}^{2} \bullet S_{\mathbf{p}}\left(\mathbf{e}_{\mathbf{p}}^{1}\right)=b
$$

Thus the matrix is also symmetric,

$$
\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right) .
$$

The eigenvalues of this are solutions of

$$
x^{2}-(a+d) x-\left(b^{2}-a d\right)=0 .
$$

The solutions are real since the discriminant citifies

$$
(a+d)^{2}+4\left(b^{2}-a d\right)=(a-d)^{2}+4 b^{2} \geq 0 .
$$

(This is the virtue of the matrix being symmetric).
Let $k_{1}(\mathbf{p}), k_{2}(\mathbf{p})$ be these eigenvalues.
If $k_{1}=k_{2}$ then $S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right)=k \mathbf{v}_{\mathbf{p}}$ for all $\mathbf{v}_{\mathbf{p}} \in T_{\mathbf{p}}(M)$ where k is this common value. In this case we say that \mathbf{p} is an umbilic point.

If $k_{1} \neq k_{2}$ there exists, for each k_{i}, an eigenvector $\mathbf{v}_{i}=\mathbf{v}_{i}(\mathbf{p})$ say, which we can assume are unit length.

Note that

$$
\begin{aligned}
k_{1} \mathbf{v}_{1} \bullet \mathbf{v}_{2} & =S_{\mathbf{p}}\left(\mathbf{v}_{1}\right) \bullet \mathbf{v}_{2}=\mathbf{v}_{1} \bullet S_{\mathbf{p}}\left(\mathbf{v}_{2}\right) \quad \text { since } S_{\mathbf{p}} \text { is symmetric } \\
& =k_{2} \mathbf{v}_{1} \bullet \mathbf{v}_{2} .
\end{aligned}
$$

Since $k_{1} \neq k_{2}$ we must have $\mathbf{v}_{1} \bullet \mathbf{v}_{2}=0$, i.e. \mathbf{v}_{1} and \mathbf{v}_{2} are orthogonal.
Further,

$$
k_{1}=k_{1} \mathbf{v}_{1} \bullet \mathbf{v}_{1}=S_{\mathbf{p}}\left(\mathbf{v}_{1}\right) \bullet \mathbf{v}_{1}=-\nabla_{\mathbf{v}_{1}} N \bullet \mathbf{v}_{1} .
$$

If $k_{1}>0$ then, as we move from \mathbf{p} in the \mathbf{v}_{1} direction $\nabla_{\mathbf{v}_{1}} N<0$, i.e. the change in the normal has a component in the $-\mathrm{ve} \mathbf{v}_{1}$ direction. That means the curve 'curves up to' the normal. If $k_{1}<0$ then the curve 'down and away' from the normal.

Definition 20 The $k_{1}(\mathbf{p}), k_{2}(\mathbf{p})$ are the principal curvatures and $\mathbf{v}_{1}(\mathbf{p})$ and $\mathbf{v}_{2}(\mathbf{p})$ the principal vectors of M at \mathbf{p}.

Note that, w.r.t \mathbf{v}_{1} and \mathbf{v}_{2}, the Shape Operator $S_{\mathbf{p}}$ has the associated matrix

$$
\left(\begin{array}{ll}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right)
$$

which has determinant $k_{1} k_{2}$ and trace $k_{1}+k_{2}$.
Linear Algebra The determinant and trace is the same for any matrix associated with a given linear map and we can talk of the determinant and trace of a linear map.

Since $\left\{\mathbf{x}_{u}, \mathbf{x}_{v}\right\}$ is a basis of $T_{\mathbf{p}}(M)$ there exist e, f, g and $h \in \mathbb{R}$ such that $S_{\mathbf{p}}\left(\mathbf{x}_{u}\right)=e \mathbf{x}_{u}+f \mathbf{x}_{v}$ and $S_{\mathbf{p}}\left(\mathbf{x}_{v}\right)=g \mathbf{x}_{u}+h \mathbf{x}_{v}$. Then, w.r.t this basis, $S_{\mathbf{p}}$ is represented by the matrix

$$
\left(\begin{array}{ll}
e & g \\
f & h
\end{array}\right)
$$

By our linear algebra observation we have $e h-f g=k_{1} k_{2}$ and $e+h=k_{1}+k_{2}$. But, how to calculate $e h-f g$ and $e+h$?

From Lemma 18 we have

$$
N \bullet \mathbf{x}_{u u}=S_{\mathbf{p}}\left(\mathbf{x}_{u}\right) \bullet \mathbf{x}_{u}=\left(e \mathbf{x}_{u}+f \mathbf{x}_{v}\right) \bullet \mathbf{x}_{\mathbf{u}}=e \mathbf{x}_{u} \bullet \mathbf{x}_{u}+f \mathbf{x}_{v} \bullet \mathbf{x}_{u}
$$

with three more to follow. This motivates giving labels as follows:

$$
\ell=N \bullet \mathbf{x}_{u u}, m=N \bullet \mathbf{x}_{u v}=N \bullet \mathbf{x}_{v u} \quad \text { and } \quad n=N \bullet \mathbf{x}_{v v}
$$

Further, set $E=\mathbf{x}_{u} \bullet \mathbf{x}_{u}, F=\mathbf{x}_{v} \bullet \mathbf{x}_{u}=\mathbf{x}_{u} \bullet \mathbf{x}_{v}$ and $G=\mathbf{x}_{v} \bullet \mathbf{x}_{v}$. So six values to calculate. The results of Lemma 18 become

$$
m=e F+f G, \ell=e E+f F, n=g F+h G \quad \text { and } \quad m=g E+h F .
$$

In matrix form,

$$
\left(\begin{array}{ll}
m & \ell \\
n & m
\end{array}\right)=\left(\begin{array}{ll}
e & f \\
g & h
\end{array}\right)\left(\begin{array}{ll}
F & E \\
G & F
\end{array}\right) .
$$

Taking determinants,

$$
k_{1} k_{2}=e h-f g=\frac{m^{2}-\ell n}{F^{2}-G E} .
$$

Solving the matrix equation

$$
\begin{aligned}
\left(\begin{array}{cc}
e & f \\
g & h
\end{array}\right) & =\frac{1}{F^{2}-E G}\left(\begin{array}{cc}
F & -E \\
-G & F
\end{array}\right)\left(\begin{array}{cc}
m & \ell \\
n & m
\end{array}\right) \\
& =\frac{1}{F^{2}-E G}\left(\begin{array}{cc}
F m-E n & F \ell-E m \\
-G m+F n & -G \ell+F m
\end{array}\right) .
\end{aligned}
$$

Then

$$
k_{1}+k_{2}=e+h=\frac{2 m F-\ell G-E n}{F^{2}-E G} .
$$

Definition 21 The Gaussian curvature of M at \mathbf{p} is $K(\mathbf{p})=k_{1}(\mathbf{p})+$ $k_{2}(\mathbf{p})$, the mean curvature of M at \mathbf{p} is $H(\mathbf{p})=\frac{1}{2}\left(k_{1}(\mathbf{p})+k_{2}(\mathbf{p})\right)$.

Note we can calculate $K(\mathbf{p})$ and $H(\mathbf{p})$ by the above formula and recover k_{1} and k_{2} by solving $x^{2}-2 H x+K=0$.

Recall we assume that k_{i} and k_{2} are non both zero. So if $K=0$ then either $k_{1}=0$ and $k_{2} \neq 0$ or vice versa. In this case the surface "looks like" a cylinder around \mathbf{p} and we say it is parabolic.

If $K>0$ then either $k_{1}>0, k_{2}>0$ or $k_{1}<0, k_{2}<0$. In both cases the surface bends towards (or away from) the normal, in whichever direction you travel. That is the surface stays to one side of the tangent space. We say M is elliptic at p.

If $K<0$ then either $k_{1}>0, k_{2}<0$ or $k_{1}<0, k_{2}>0$. So in different directions you bend towards and away from the normal. We say that M is hyperbolic, or a saddle, near \mathbf{p}.

Before we look at calculating these curvatures we state, without proof, a celebrated result dues to Gauss.

Theorem 22 Theorema egreguim An isometry preserves the Gaussian Curvature; Let $\mathbf{F}: S_{1} \rightarrow S_{2}$ be an isometry between two surfaces. For every $\mathbf{p} \in S_{1}$ we have $K(\mathbf{p})=K(\mathbf{F}(\mathbf{p}))$.

Example 23 Find the Gaussian curvature of a surface of revolution

$$
\mathbf{x}: \mathbf{u} \mapsto(g(u), h(u) \cos v, h(u) \sin v) .
$$

Solution

$$
\mathbf{x}_{u}=\left(g^{\prime}, h^{\prime} \cos v, h^{\prime} \sin v\right)_{\mathbf{x}(\mathbf{u})} \quad \text { and } \quad \mathbf{x}_{v}=(0,-h \sin v, h \cos v)_{\mathbf{x}(\mathbf{u})} .
$$

Then

$$
\begin{aligned}
& E=\mathbf{x}_{u} \bullet \mathbf{x}_{u}=\left(g^{\prime}\right)^{2}+\left(h^{\prime}\right)^{2}, \\
& F=\mathbf{x}_{v} \bullet \mathbf{x}_{u}=-h^{\prime} \cos v h \sin v+h^{\prime} \sin v h \cos v=0, \\
& G=\mathbf{x}_{v} \bullet \mathbf{x}_{v}=h^{2} .
\end{aligned}
$$

So $F^{2}-E G=-h^{2}\left(\left(g^{\prime}\right)^{2}+\left(h^{\prime}\right)^{2}\right)$.
For the normal vector field

$$
\mathbf{x}_{u} \times \mathbf{x}_{v}=\left(h^{\prime} h,-g^{\prime} h \cos v,-g^{\prime} h \sin v\right)_{\mathbf{x}(\mathbf{u})} .
$$

we have $\left\|\mathbf{x}_{u} \times \mathbf{x}_{v}\right\|=h\left(\left(h^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right)^{1 / 2}$. Thus

$$
N=\frac{1}{D}\left(h^{\prime},-g^{\prime} \cos v,-g^{\prime} \sin v\right)_{\mathbf{x}(\mathbf{u})},
$$

where $D=\left(\left(h^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}\right)^{1 / 2}$.
Next

$$
\begin{aligned}
& \mathbf{x}_{u u}=\left(g^{\prime \prime}, h^{\prime \prime} \cos v, h^{\prime \prime} \sin v\right)_{\mathbf{x}(\mathbf{u})} \\
& \mathbf{x}_{u v}=\left(0,-h^{\prime} \sin v, h^{\prime} \cos v\right)_{\mathbf{x}(\mathbf{u})} \\
& \mathbf{x}_{v v}=(0,-h \cos v,-h \sin v)_{\mathbf{x}(\mathbf{u})}
\end{aligned}
$$

Then

$$
\begin{aligned}
\ell & =N \bullet \mathbf{x}_{u u}=\frac{1}{D}\left(h^{\prime} g^{\prime \prime}-g^{\prime} h^{\prime \prime}\right) . \\
m & =N \bullet \mathbf{x}_{u v}=0 \\
n & =N \bullet \mathbf{x}_{v v}=\frac{1}{D} h g^{\prime} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
K & =\frac{m^{2}-\ell n}{F^{2}-G E}=\frac{1}{D}\left(h^{\prime} g^{\prime \prime}-g^{\prime} h^{\prime \prime}\right) \frac{1}{D} h g^{\prime} \frac{1}{h^{2}\left(\left(g^{\prime}\right)^{2}+\left(h^{\prime}\right)^{2}\right)} \\
& =\frac{g^{\prime}\left(h^{\prime} g^{\prime \prime}-g^{\prime} h^{\prime \prime}\right)}{h\left(\left(g^{\prime}\right)^{2}+\left(h^{\prime}\right)^{2}\right)^{2}} .
\end{aligned}
$$

In particular, for a torus, when $g(u)=r \sin u$ and $h(u)=R+r \cos u$ we find

$$
K=\frac{\cos u}{r(R+r \cos u)} .
$$

So there are hyperbolic ($\pi / 2<u<3 \pi / 2$), parabolic ($u=0$ or $u=3 \pi / 2$) or elliptic ($0<u<\pi / 2,3 \pi / 2<u<2 \pi$) points on a torus.

Example 24 Find the Gaussian curvature for the graph of $w=\ell_{1} u^{2}+\ell_{2} v^{2}$.
Solution we have

$$
\begin{aligned}
\mathbf{x}_{u} & =\left(1,0,2 \ell_{1} u\right)_{\mathbf{x}(\mathbf{u})} ; \mathbf{x}_{v}=\left(0,1,2 \ell_{2} u\right)_{\mathbf{x}(\mathbf{u})} ; \mathbf{x}_{u u}=\left(0,0,2 \ell_{1}\right)_{\mathbf{x (u)}}, \\
\mathbf{x}_{u v} & =0 \text { and } \quad \mathbf{x}_{v v}=\left(0,0,2 \ell_{2}\right)_{\mathbf{x}(\mathbf{u})} .
\end{aligned}
$$

So

$$
N=\frac{1}{D}\left(-2 \ell_{1} u,-2 \ell_{2} v, 1\right)_{\mathbf{x}(\mathbf{u})},
$$

where $D=\left(1+4 \ell_{1}^{2} u^{2}+4 \ell_{2}^{2} v^{2}\right)^{1 / 2}$. Then $E=1+4 \ell_{1}^{2} u^{2} ; F=4 \ell_{1} \ell_{2} u v ; G=$ $1+4 \ell_{2}^{2} v^{2} ; m=0 ; \ell=2 \ell_{1} / D$ and $n=2 \ell_{2} / D$. Hence

$$
K=\frac{4 \ell_{1} \ell_{2}}{D^{4}}
$$

Lemma 25 If $\mathbf{v}_{\mathbf{p}}, \mathbf{w}_{\mathbf{p}} \in T_{\mathbf{p}}(M)$ are linearly independent tangent vectors then

$$
\begin{aligned}
S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right) \times S_{\mathbf{p}}\left(\mathbf{w}_{\mathbf{p}}\right) & =K(\mathbf{p}) \mathbf{v}_{\mathbf{p}} \times \mathbf{w}_{\mathbf{p}} \\
S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right) \times \mathbf{w}_{\mathbf{p}}+\mathbf{v}_{\mathbf{p}} \times S_{\mathbf{p}}\left(\mathbf{w}_{\mathbf{p}}\right) & =2 H(\mathbf{p}) \mathbf{v}_{\mathbf{p}} \times \mathbf{w}_{\mathbf{p}}
\end{aligned}
$$

Proof Since $\mathbf{v}_{\mathbf{p}}$ and $\mathbf{w}_{\mathbf{p}}$ form a basis for $T_{\mathbf{p}}(M)$ there exist real a, b, c and d such that

$$
S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right)=a \mathbf{v}_{\mathbf{p}}+b \mathbf{w}_{\mathbf{p}} \quad \text { and } \quad S_{\mathbf{p}}\left(\mathbf{w}_{\mathbf{p}}\right)=c \mathbf{v}_{\mathbf{p}}+d \mathbf{w}_{\mathbf{p}}
$$

Then

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

is the matrix associated with S_{p} w.r.t this basis. Then

$$
\begin{equation*}
K(\mathbf{p})=a d-b c \quad \text { and } \quad H(\mathbf{p})=\frac{1}{2}(a+d) . \tag{3}
\end{equation*}
$$

But

$$
\begin{aligned}
S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right) \times S_{\mathbf{p}}\left(\mathbf{w}_{\mathbf{p}}\right) & =\left(a \mathbf{v}_{\mathbf{p}}+b \mathbf{w}_{\mathbf{p}}\right) \times\left(c \mathbf{v}_{\mathbf{p}}+d \mathbf{w}_{\mathbf{p}}\right) \\
& =(a d-b c) \mathbf{v}_{\mathbf{p}} \times \mathbf{w}_{\mathbf{p}} \\
& =K(\mathbf{p}) \quad \text { by }(3)
\end{aligned}
$$

Also

$$
\begin{aligned}
S_{\mathbf{p}}\left(\mathbf{v}_{\mathbf{p}}\right) \times \mathbf{w}_{\mathbf{p}}+\mathbf{v}_{\mathbf{p}} \times S_{\mathbf{p}}\left(\mathbf{w}_{\mathbf{p}}\right) & =\left(a \mathbf{v}_{\mathbf{p}}+b \mathbf{w}_{\mathbf{p}}\right) \times \mathbf{w}_{\mathbf{p}}+\mathbf{v}_{\mathbf{p}} \times\left(c \mathbf{v}_{\mathbf{p}}+d \mathbf{w}_{\mathbf{p}}\right) \\
& =a \mathbf{v}_{\mathbf{p}} \times \mathbf{w}_{\mathbf{p}}+d \mathbf{v}_{\mathbf{p}} \times \mathbf{w}_{\mathbf{p}} \\
& =2 H(\mathbf{p}) \mathbf{v}_{\mathbf{p}} \times \mathbf{w}_{\mathbf{p}}
\end{aligned}
$$

Definition 26 Assume V is a tangent vector field on M such that $V(\mathbf{p}) \in$ $T_{\mathbf{p}}(M)$ for all $\mathbf{p} \in M$. Define $S(V)$ a vector field on M by $S(V)(\mathbf{p})=$ $S_{\mathbf{p}}(V(\mathbf{p}))$.

The pointwise results of the last lemma can be written in terms of vector fields V and W,

$$
\begin{aligned}
S(V) \times S(W) & =K V \times W \\
S(V) \times W+V \times S(W) & =2 H V \times W,
\end{aligned}
$$

where $K, H: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathbf{p} \mapsto K(\mathbf{p})$ and $\mathbf{p} \mapsto H(\mathbf{p})$ respectively.
A result for vectors is the Lagrange identity

$$
(\mathbf{v} \times \mathbf{w}) \bullet(\mathbf{a} \times \mathbf{b})=\left|\begin{array}{ll}
\mathrm{v} \bullet \mathrm{a} & \mathrm{v} \bullet \mathrm{~b} \\
\mathrm{w} \bullet \mathrm{a} & \mathrm{w} \bullet \mathrm{~b}
\end{array}\right|
$$

This allows us to solve our system as

$$
K\|V \times W\|^{2}=(V \times W) \bullet(S(V) \times S(W))=\left|\begin{array}{ll}
V \bullet S(V) & V \bullet S(W) \\
W \bullet S(V) & W \bullet S(W)
\end{array}\right|
$$

So

$$
K=\frac{1}{\|V \times W\|^{2}}\left|\begin{array}{cc}
V \bullet S(V) & V \bullet S(W) \\
W \bullet S(V) & W \bullet S(W)
\end{array}\right|=\frac{\left|\begin{array}{ll}
V \bullet S(V) & V \bullet S(W) \\
W \bullet S(V) & W \bullet S(W)
\end{array}\right|}{\left|\begin{array}{ll}
V \bullet V & V \bullet W \\
W \bullet V & W \bullet W
\end{array}\right|}
$$

Similarly

$$
H=\frac{1}{2}\left(\frac{\left|\begin{array}{lll}
V \bullet S(V) & V \bullet S(W) \\
W \bullet V & W \bullet W
\end{array}\right|+\left|\begin{array}{ll}
V \bullet V & V \bullet W \\
W \bullet S(V) & W \bullet S(W)
\end{array}\right|}{\left|\begin{array}{ll}
V \bullet V & V \bullet W \\
W \bullet V & W \bullet W
\end{array}\right|}\right)
$$

Let Z be a normal vector field on M, normalized as $Z /\|Z\|$. Let V be a tangent vector field on M. Then

$$
S(V)=-\nabla_{V}\left(\frac{Z}{\|Z\|}\right)=-\frac{1}{\|Z\|} \nabla_{V}(Z)-V\left(\frac{1}{\|Z\|}\right) Z,
$$

by a result seen at the end of Chapter 2. Note that the second term is normal to M. Let W be another tangent vector field so

$$
S(W)=-\frac{1}{\|W\|} \nabla_{W}(Z)-W\left(\frac{1}{\|W\|}\right) Z .
$$

Now choose $Z=V \times W$ and consider

$$
\begin{aligned}
S(V) \times S(W)= & \frac{1}{\|Z\|^{2}} \nabla_{V}(Z) \times \nabla_{W}(Z)+\frac{1}{\|Z\|} W\left(\frac{1}{\|W\|}\right) \nabla_{V}(Z) \times Z \\
& +\frac{1}{\|W\|} V\left(\frac{1}{\|Z\|}\right) Z \times \nabla_{W}(Z)
\end{aligned}
$$

Now dot with $V \times W=Z$. Note that $\nabla_{V}(Z), \nabla_{W}(Z) \in T_{\mathbf{p}}(M)$ and Z is orthogonal to $T_{p}(M)$ so $\nabla_{V}(Z) \times Z, Z \times \nabla_{W}(Z) \in T_{\mathbf{p}}(M)$ (remembering we are in 3 dimensions). Then $\left(\nabla_{V}(Z) \times Z\right) \bullet Z=0$ and $\left(Z \times \nabla_{W}(Z)\right) \bullet Z=0$.

From above

$$
K\|V \times W\|^{2}=(V \times W) \bullet(S(V) \times S(W))=\frac{1}{\|Z\|^{2}}\left(\nabla_{V}(Z) \times \nabla_{W}(Z)\right) \bullet Z
$$

So

$$
K=\frac{1}{\|Z\|^{4}}\left(\nabla_{V}(Z) \times \nabla_{W}(Z)\right) \bullet Z
$$

Example 27 Find K for

$$
M=\left\{\mathrm{x} \in \mathbb{R}^{3}: \frac{x_{1}^{2}}{a_{1}^{2}}+\frac{x_{2}^{2}}{a_{2}^{2}}+\frac{x_{3}^{2}}{a_{3}^{2}}=1\right\} .
$$

Solution. As seen earlier, for an implicitly given surface the gradient vector is normal to the Tangent Space so we can choose

$$
Z=\frac{1}{2} \nabla g=\sum_{i=1}^{3} \frac{x_{i}}{a_{i}^{2}} U_{i} .
$$

Then

$$
\|Z\|^{4}=\left(\sum_{i=1}^{3} \frac{x_{i}^{2}}{a_{i}^{4}}\right)^{2}
$$

Let $\mathbf{p} \in M, V=\sum_{i=1}^{3} v_{i} U_{i}$ and $W=\sum_{i=1}^{3} w_{i} U_{i} \in T_{\mathbf{p}}(M)$ where v_{i}, w_{i} : $\mathbb{R}^{3} \rightarrow \mathbb{R}$. Then

$$
\nabla_{V} Z=\sum_{i=1}^{3} V\left[\frac{x_{i}}{a_{i}^{2}}\right] U_{i}=\sum_{i=1}^{3} \sum_{j=1}^{3} v_{j} \frac{\partial}{\partial x_{j}}\left(\frac{x_{i}}{a_{i}^{2}}\right) U_{i}=\sum_{i=1}^{3} \frac{v_{i}}{a_{i}^{2}} U_{i} .
$$

Similarly

$$
\nabla_{W} Z=\sum_{i=1}^{3} \frac{w_{i}}{a_{i}^{2}} U_{i} .
$$

Then

$$
\begin{aligned}
\nabla_{V} Z \times \nabla_{W} Z= & \left(\frac{v_{2}}{a_{2}^{2}} \frac{w_{3}}{a_{3}^{2}}-\frac{v_{3}}{a_{3}^{2}} \frac{w_{2}}{a_{2}^{2}}\right) U_{1}+\left(\frac{v_{3}}{a_{3}^{2}} \frac{w_{1}}{a_{1}^{2}}-\frac{v_{1}}{a_{1}^{2}} \frac{w_{3}}{a_{3}^{2}}\right) U_{2} \\
& +\left(\frac{v_{1}}{a_{1}^{2}} \frac{w_{2}}{a_{2}^{2}}-\frac{v_{2}}{a_{2}^{2}} \frac{w_{1}}{a_{1}^{2}}\right) U_{3} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
Z \bullet \nabla_{V} Z \times \nabla_{W} Z= & \frac{x_{1}}{a_{1}^{2}}\left(\frac{v_{2}}{a_{2}^{2}} \frac{w_{3}}{a_{3}^{2}}-\frac{v_{3}}{a_{3}^{2}} \frac{w_{2}}{a_{2}^{2}}\right)+\frac{x_{2}}{a_{2}^{2}}\left(\frac{v_{3}}{a_{3}^{2}} \frac{w_{1}}{a_{1}^{2}}-\frac{v_{1}}{a_{1}^{2}} \frac{w_{3}}{a_{3}^{2}}\right) \\
& +\frac{x_{3}}{a_{3}^{2}}\left(\frac{v_{1}}{a_{1}^{2}} \frac{w_{2}}{a_{2}^{2}}-\frac{v_{2}}{a_{2}^{2}} \frac{w_{1}}{a_{1}^{2}}\right) \\
= & \frac{1}{a_{1}^{2} a_{2}^{2} a_{3}^{2}}\left(x_{1}, x_{2}, x_{3}\right) \bullet(V \times W) \\
= & \frac{1}{a_{1}^{2} a_{2}^{2} a_{3}^{2}}\left(x_{1}, x_{2}, x_{3}\right) \bullet Z \\
= & \frac{1}{a_{1}^{2} a_{2}^{2} a_{3}^{2}} \sum_{i=1}^{3} \frac{x_{i}^{2}}{a_{i}^{2}}=\frac{1}{a_{1}^{2} a_{2}^{2} a_{3}^{2}} .
\end{aligned}
$$

Hence

$$
K=\frac{1}{a_{1}^{2} a_{2}^{2} a_{3}^{2}} \frac{1}{\|Z\|^{4}}=\frac{1}{a_{1}^{2} a_{2}^{2} a_{3}^{2}}\left(\sum_{i=1}^{3} \frac{x_{i}^{2}}{a_{i}^{4}}\right)^{-2} .
$$

